Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.490
Filtrar
1.
Biosensors (Basel) ; 14(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38667192

RESUMO

Rapid surface charge mapping of a solid surface remains a challenge. In this study, we present a novel microchip based on liquid crystals for assessing the surface charge distribution of a planar or soft surface. This chip enables rapid measurements of the local surface charge distribution of a charged surface. The chip consists of a micropillar array fabricated on a transparent indium tin oxide substrate, while the liquid crystal is used to fill in the gaps between the micropillar structures. When an object is placed on top of the chip, the local surface charge (or zeta potential) influences the orientation of the liquid crystal molecules, resulting in changes in the magnitude of transmitted light. By measuring the intensity of the transmitted light, the distribution of the surface charge can be accurately quantified. We calibrated the chip in a three-electrode configuration and demonstrated the validity of the chip for rapid surface charge mapping using a borosilicate glass slide. This chip offers noninvasive, rapid mapping of surface charges on charged surfaces, with no need for physical or chemical modifications, and has broad potential applications in biomedical research and advanced material design.


Assuntos
Cristais Líquidos , Propriedades de Superfície , Cristais Líquidos/química , Compostos de Estanho/química , Eletrodos , Técnicas Biossensoriais
2.
Lab Chip ; 24(10): 2774-2790, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38682609

RESUMO

The fabrication of microfluidic devices has progressed from cleanroom manufacturing to replica molding in polymers, and more recently to direct manufacturing by subtractive (e.g., laser machining) and additive (e.g., 3D printing) techniques, notably digital light processing (DLP) photopolymerization. However, many methods require technical expertise and DLP 3D printers remain expensive at a cost ∼15-30 K USD with ∼8 M pixels that are 25-40 µm in size. Here, we introduce (i) the use of low-cost (∼150-600 USD) liquid crystal display (LCD) photopolymerization 3D printing with ∼8-58 M pixels that are 18-35 µm in size for direct microfluidic device fabrication, and (ii) a poly(ethylene glycol) diacrylate-based ink developed for LCD 3D printing (PLInk). We optimized PLInk for high resolution, fast 3D printing and biocompatibility while considering the illumination inhomogeneity and low power density of LCD 3D printers. We made lateral features as small as 75 µm, 22 µm-thick embedded membranes, and circular channels with a 110 µm radius. We 3D printed microfluidic devices previously manufactured by other methods, including an embedded 3D micromixer, a membrane microvalve, and an autonomous capillaric circuit (CC) deployed for interferon-γ detection with excellent performance (limit of detection: 12 pg mL-1, CV: 6.8%). We made PLInk-based organ-on-a-chip devices in 384-well plate format and produced 3420 individual devices within an 8 h print run. We used the devices to co-culture two spheroids separated by a vascular barrier over 5 days and observed endothelial sprouting, cellular reorganization, and migration. LCD 3D printing together with tailored inks pave the way for democratizing access to high-resolution manufacturing of ready-to-use microfluidic and organ-on-a-chip devices by anyone, anywhere.


Assuntos
Dispositivos Lab-On-A-Chip , Cristais Líquidos , Impressão Tridimensional , Cristais Líquidos/química , Humanos , Polietilenoglicóis/química , Desenho de Equipamento , Técnicas Analíticas Microfluídicas/instrumentação , Sistemas Microfisiológicos
3.
Soft Matter ; 20(15): 3243-3247, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38572565

RESUMO

In this study, by fabricating DNA doped with tetraphenylethene-containing ammonium surfactant, the resulting solvent-free DNA ionic complex could undergo a humidity-induced phase change that could be well tracked by the fluorescence signal of the surfactant. Taking advantage of the humidity-induced change in fluorescence, the reported ionic DNA complex could accurately indicate the humidity in real time.


Assuntos
Cristais Líquidos , Cristais Líquidos/química , Umidade , Materiais Biocompatíveis , DNA/química , Tensoativos/química
4.
Sci Total Environ ; 928: 172459, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38615780

RESUMO

Liquid crystal monomers (LCMs) comprise a class of organic pollutants that have garnered considerable attention because of their dioxin-like toxicity (i.e., modulation of genes) and presence in various environments. However, limited information about the identities, occurrence, and distribution of LCMs has highlighted an urgent need for a high-throughput and sensitive analytical method. In this study, we developed and validated a rapid, simple, sensitive method that involves minimal solvent consumption. The method was applied for the simultaneous detection and identification of 78 LCMs in atmospheric total suspended particulate samples (dae < 100 µm) using gas chromatography coupled with triple quadrupole mass spectrometry. The results showed high degrees of linearity with correlation coefficients >0.995 in the concentration range of 5.0-500 ng/mL. The instrumental detection limits ranged from 0.7 to 5.3 pg, and the method detection limits ranged from 0.1 to 0.9 pg/m3. The accuracy of the method was between 70 % and 130 % for most analytes, and the relative standard deviations of six replicates were <15 % at three levels of spiking (10, 50, and 200 ng/mL). The developed analytical method was applied to analyze real air particulate samples from Beijing, China. Overall, 45 LCMs ranged from 65.5 to 145.7 pg/m3, with a mean concentration of 92.5 pg/m3. Among them, (trans,trans)-4-propyl-4'-ethenyl-1,1'-bicyclohexane (PVB) was the most abundant, with an average concentration of 33.6 pg/m3. The total estimated daily intakes of LCMs for adults and children were 15.6 and 46.6 pg/kg bw/day, respectively. Accordingly, the method described herein is suitable for quantifying LCMs in atmospheric particulate samples. This study will be valuable for investigating LCM environmental occurrence, behaviors, and risk assessments.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Cristais Líquidos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Pequim , Material Particulado/análise
5.
Environ Sci Pollut Res Int ; 31(20): 29859-29869, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38592626

RESUMO

Liquid crystal monomers (LCMs) are widely used in electronic devices and emerging as an environmental pollutant, while their occurrence in indoor environments is still less studied. In this study, 32 out of 37 target LCMs were detected in indoor residential dust samples (n = 112) from Beijing, China. Concentrations of Σ32LCMs ranged from 17.8 to 197 ng/g, with a median value of 54.7 ng/g. Fluorinated biphenyls and analogs (FBAs) and cyanobiphenyls and analogs (CBAs), with median concentrations of 22.8 and 15.9 ng/g, respectively, were the main kinds of LCMs. Although 32 LCMs can be detected, four monomers with the highest contamination levels contributed to almost 70% of the total LCMs. Spearman correlation analysis found significant correlations among some monomers, which indicated that they might share similar sources in the residential environment. Estimated daily intakes (EDIs) of LCMs via indoor dust for Beijing residents were calculated, and the results showed that dust ingestion and dermal contact were both main intake pathways to LCMs, and younger people may face higher exposure to LCMs. A comparison to the results of China's total diet study showed that EDIs of LCMs via food consumption might be higher than that via dust intake, while health risks caused by exposure of LCMs for the general population, both through food and dust, were insignificant at present.


Assuntos
Poluição do Ar em Ambientes Fechados , Poeira , Monitoramento Ambiental , Cristais Líquidos , Poeira/análise , Pequim , Poluição do Ar em Ambientes Fechados/análise , Humanos , Monitoramento Ambiental/métodos , Exposição Ambiental , China
6.
Adv Sci (Weinh) ; 11(18): e2306129, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447146

RESUMO

Plants can autonomously adjust their growth direction based on the gravitropic response to maximize energy acquisition, despite lacking nerves and muscles. Endowing soft robots with gravitropism may facilitate the development of self-regulating systems free of electronics, but remains elusive. Herein, acceleration-regulated soft actuators are described that can respond to the gravitational field by leveraging the unique fluidity of liquid metal in its self-limiting oxide skin. The soft actuator is obtained by magnetic printing of the fluidic liquid metal heater circuit on a thermoresponsive liquid crystal elastomer. The Joule heat of the liquid metal circuit with gravity-regulated resistance can be programmed by changing the actuator's pose to induce the flow of liquid metal. The actuator can autonomously adjust its bending degree by the dynamic interaction between its thermomechanical response and gravity. A gravity-interactive soft gripper is also created with controllable grasping and releasing by rotating the actuator. Moreover, it is demonstrated that self-regulated oscillation motion can be achieved by interfacing the actuator with a monostable tape spring, allowing the electronics-free control of a bionic walker. This work paves the avenue for the development of liquid metal-based reconfigurable electronics and electronics-free soft robots that can perceive gravity or acceleration.


Assuntos
Gravitropismo , Robótica , Robótica/métodos , Robótica/instrumentação , Gravitropismo/fisiologia , Desenho de Equipamento/métodos , Metais/química , Cristais Líquidos , Plantas
7.
Carbohydr Polym ; 332: 121927, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431420

RESUMO

Natural bone exhibits a complex anisotropic and micro-nano hierarchical structure, more importantly, bone extracellular matrix (ECM) presents liquid crystal (LC) phase and viscoelastic characteristics, providing a unique microenvironment for guiding cell behavior and regulating osteogenesis. However, in bone tissue engineering scaffolds, the construction of bone-like ECM microenvironment with exquisite microstructure is still a great challenge. Here, we developed a novel polysaccharide LC hydrogel supported 3D printed poly(l-lactide) (PLLA) scaffold with bone-like ECM microenvironment and micro-nano aligned structure. First, we prepared a chitin whisker/chitosan polysaccharide LC precursor, and then infuse it into the pores of 3D printed PLLA scaffold, which was previously surface modified with a polydopamine layer. Next, the LC precursor was chemical cross-linked by genipin to form a hydrogel network with bone-like ECM viscoelasticity and LC phase in the scaffold. Subsequently, we performed directional freeze-casting on the composite scaffold to create oriented channels in the LC hydrogel. Finally, we soaked the composite scaffold in phytic acid to further physical cross-link the LC hydrogel through electrostatic interactions and impart antibacterial effects to the scaffold. The resultant biomimetic scaffold displays osteogenic activity, vascularization ability and antibacterial effect, and is expected to be a promising candidate for bone repair.


Assuntos
Quitosana , Cristais Líquidos , Animais , Quitosana/química , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Quitina/farmacologia , Quitina/metabolismo , Vibrissas , Alicerces Teciduais/química , Regeneração Óssea , Engenharia Tecidual , Osteogênese , Matriz Extracelular/metabolismo , Antibacterianos/farmacologia
8.
Food Chem ; 445: 138789, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38394911

RESUMO

We describe a simple and sensitive liquid-crystal (LC)-based method for quantifying carbendazim (CBZ) by exploiting aptamer-specific recognition at the aqueous-LC interface. The method relies on the interfacial interaction between an aptamer and cetyltrimethylammonium bromide (CTAB); this interaction varies depending on the amount of CBZ. In the absence of CBZ, the aptamer disrupts the CTAB monolayer through electrostatic attraction, leading to a transition from homeotropic to tilted ordering of the LCs. As CBZ concentrations rise, the formation of aptamer-CBZ complexes increases, preserving the vertical alignment of the LCs by reducing collapse of the CTAB layer caused by electrostatic interactions. Using these methods, we achieved a CBZ detection limit of 3.12 pM (0.000597 µg/L) over a linear range of 0.05-5 nM. Moreover, we quantified CBZ levels in peach, soil, and tap water samples. Our LC-based detection method has significant research potential, offering sensitive, and straightforward detection of CBZ.


Assuntos
Aptâmeros de Nucleotídeos , Benzimidazóis , Técnicas Biossensoriais , Carbamatos , Cristais Líquidos , Cristais Líquidos/química , Cetrimônio , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química , Água/química
9.
J Hazard Mater ; 468: 133848, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401218

RESUMO

Liquid crystal monomers (LCMs), identified as emerging contaminations, have been detected in soils and plants, but their accumulation characteristics in plants haven't been studied. Therefore, this study systematically investigated the accumulation characteristics of LCMs in plants from four dimensions (i.e., plant fruit species, soil types, plant growth stages, and LCMs categories) for the first time. The LCMs concentrations (9.96 × 10-4 to 114.608 ng/g) in 22 plant fruits were predicted by the partition-limited model. Grains with the highest lipid content showed the highest LCMs accumulation propensity. Plants grown in paddy soil showed a strong LCMs accumulation capacity. Results showed that the LCMs accumulation capacity in plants from soils decreased when the soil organic matter content increased. A preferential accumulation of LCMs in plant root systems during growth was found by the molecular dynamics simulations. Compared to polychlorinated biphenyls (as the reference contaminants of LCMs), LCMs exhibit higher accumulation in plant roots and lower translocation to shoots. For the fourth dimension, lipophilicity was found to be the main reason of LCMs accumulation by intergraded stepwise linear regression with sensitivity analysis. This is the inaugural research concentrating on LCMs accumulation in plants, providing insights and theoretical guidance for future LCMs management strategies multidimensionally.


Assuntos
Cristais Líquidos , Poluentes do Solo , Traqueófitas , Poluentes do Solo/análise , Plantas , Raízes de Plantas/química , Solo/química
10.
Chemosphere ; 352: 141408, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336041

RESUMO

Waste liquid crystal displays (LCDs) are one of the most substantial and rapidly growing e-waste streams that contain a notable amount of critical, precious, and toxic elements. This study presented a novel thermal-biological hybrid method for resource recovery from waste LCDs. Through the design of a multistage thermal treatment process with the addition of optimized 20 wt% B2O3 to waste, the LCD's glass structure was separated into two interconnected phases, resulting in the transfer of metals from the LCD's glass phase to the B2O3 phase that can solubilize in the acid solution. Following the thermal treatment step, the biometabolites of Aspergillus niger were used for bioleaching of In, Sr, Al, and As from the obtained thermally treated product. The optimal bioleaching parameters were a pulp density of 10 g/L, temperature of 70 °C, and leaching time of 2 days, which led to the highest extraction of 82.6% Al, 70.8% As, 64.5% In, and 36.2% Sr from thermally treated LCD waste, representing a multifold increase in Al, As, and Sr extraction levels compared to untreated waste. This study demonstrated that the proposed hybrid method could successfully overcome waste complexities and ensure effective element extraction from discarded LCDs.


Assuntos
Resíduo Eletrônico , Cristais Líquidos , Metaloides , Cristais Líquidos/química , Índio/química , Resíduo Eletrônico/análise , Reciclagem/métodos
11.
J Phys Chem Lett ; 15(8): 2117-2122, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38363235

RESUMO

The misfolding of the α-helical cellular prion protein into a self-propagating ß-rich aggregated form is a key pathogenic event in fatal and transmissible neurodegenerative diseases collectively known as prion diseases. Herein, we utilize the interfacial properties of liquid crystals (LCs) to monitor the lipid-membrane-induced conformational switching of prion protein (PrP) into ß-rich amyloid fibrils. The lipid-induced conformational switching resulting in aggregation occurs at the nanomolar protein concentration and is primarily mediated by electrostatic interactions between PrP and lipid headgroups. Our LC-based methodology offers a potent and sensitive tool to detect and delineate molecular mechanisms of PrP misfolding mediated by lipid-protein interactions at the aqueous interface under physiological conditions.


Assuntos
Cristais Líquidos , Doenças Priônicas , Príons , Humanos , Proteínas Priônicas/química , Príons/química , Príons/metabolismo , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Peptídeos beta-Amiloides , Amiloide/química , Lipídeos , Dobramento de Proteína
12.
Environ Sci Technol ; 58(8): 3908-3918, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38329000

RESUMO

The heterogeneous photodegradation behavior of liquid crystal monomers (LCMs) in standard dust (standard reference material, SRM 2583) and environmental dust was investigated. The measured photodegradation ratios for 23 LCMs in SRM and environmental dust in 12 h were 11.1 ± 1.8 to 23.2 ± 1.1% and 8.7 ± 0.5 to 24.0 ± 2.8%, respectively. The degradation behavior of different LCM compounds varied depending on their structural properties. A quantitative structure-activity relationship model for predicting the degradation ratio of LCMs in SRM dust was established, which revealed that the molecular descriptors related to molecular polarizability, electronegativity, and molecular mass were closely associated with LCMs' photodegradation. The photodegradation products of the LCM compound 4'-propoxy-4-biphenylcarbonitrile (PBIPHCN) in dust, including •OH oxidation, C-O bond cleavage, and ring-opening products, were identified by nontarget analysis, and the corresponding degradation pathways were suggested. Some of the identified products, such as 4'-hydroxyethoxy-4-biphenylcarbonitrile, showed predicted toxicity (with an oral rat lethal dose of 50%) comparable to that of PBIPHCN. The half-lives of the studied LCMs in SRM dust were estimated at 32.2-82.5 h by fitting an exponential decay curve to the observed photodegradation data. The photodegradation mechanisms of LCMs in dust were revealed for the first time, enhancing the understanding of LCMs' environmental behavior and risks.


Assuntos
Poeira , Cristais Líquidos , Animais , Ratos , Relação Quantitativa Estrutura-Atividade , Fotólise
13.
Chem Phys Lipids ; 260: 105377, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325712

RESUMO

Atorvastatin calcium (ATV) and proanthocyanidins (PAC) have a strong antioxidant activity, that can benefit to reduce the atherosclerotic plaque progression. Unfortunately, the bioavailability of ATV is greatly reduced due to its limited drug solubility while the PAC drug is unstable upon exposure to the atmospheric oxygen. Herein, the lyotropic liquid crystalline nanoparticles (LLCNPs) constructed by a binary mixture of soy phosphatidylcholine (SPC) and citric acid ester of monoglyceride (citrem) at different weight ratios were used to encapsulate the hydrophobic ATV and hydrophilic PAC. The LLCNPs were further characterized by small-angle X-ray scattering and dynamic light scattering. Depending on the lipid composition, the systems have a size range of 140-190 nm and were able to encapsulate both drugs in the range of 90-100%. Upon increasing the citrem content of drug-loaded LLCNPs, the hexosomes (H2) was completely transformed to an emulsified inverse micellar (L2). The optimum encapsulation efficiency (EE) of ATV and PAC were obtained in citrem/SPC weight ratio 4:1 (L2) and 1:1 (H2), respectively. There was a substantial change in the mean size and PDI of the nanoparticles upon 30 days of storage with the ATV-loaded LLCNPs exhibiting greater colloidal instability than PAC-loaded LLCNPs. The biphasic released pattern (burst released at the initial stage followed by the sustained released at the later stage) was perceived in ATV formulation, while the burst drug released pattern was observed in PAC formulations that could be attributed by its internal H2 structure. Interestingly, the cytokine studies showed that the PAC-LLCNPs promisingly up regulate the expressions of tumor necrosis factor-alpha (TNF-α) better than the drug-free and ATV-loaded LLCNPs samples. The structural tunability of citrem/SPC nanoparticles and their effect on physicochemical characteristic, biological activities and potential as an alternative drug delivery platform in the treatment of atherosclerosis are discussed.


Assuntos
Cristais Líquidos , Nanopartículas , Proantocianidinas , Atorvastatina/química , Preparações Farmacêuticas , Nanopartículas/química , Cristais Líquidos/química
14.
Langmuir ; 40(8): 4321-4332, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38364370

RESUMO

Different phases of lyotropic liquid crystals (LLCs), made up of mesogen-like sodium dodecyl sulfate (SDS), mainly bestow different bulk viscosities. Along with this, the role of microviscosities of the individual LLC phases is of immense interest because a minute change in it due to guest incorporation can cause significant alteration in their property as a potential energy transfer scaffold. Recently, LLCs have been identified as plausible drug delivery agents for ocular treatments. In this direction, the present work illustrates photophysical modulations of an important laser dye as well as an ophthalmic medicine, coumarin 6 (C6), inside different LLC phases in an aqueous medium. C6 molecules spontaneously accumulate in water, leading to aggregation-caused quenching (ACQ) of fluorescence. However, the different phases of the LLCs prepared from SDS and water helped in disintegrating the C6 colonies to various extents depending upon the microviscosity. The heterogeneity in the LLC phases, in turn, could modulate the Förster resonance energy transfer (FRET) between C6 and the LLC incorporated with N-doped carbon nanoparticles (N-CNPs). The N-CNPs act as potential photosensitizers and generate singlet oxygen (1O2), a reactive oxygen species (ROS), to different extents. Microviscosities of the prepared LLCs were calculated by using fluorescence correlation spectroscopy (FCS). The different phases of the LLCs, viz., lamellar and hexagonal, with different microviscosities controlled the extent of C6 disaggregation and hence the FRET and the ROS generation. The results are encouraging since ROS generation has a significant role in the vision mechanism and PDT-based applications. LLC-based drug administration with potential FRET to control ROS generation may become handy in ophthalmology. The LLC phases used in this experiment not only served the purpose of drug delivery but also the photophysical events therein are compatible with the ocular environment.


Assuntos
Cristais Líquidos , Oxigênio Singlete , Espécies Reativas de Oxigênio , Transferência Ressonante de Energia de Fluorescência , Cristais Líquidos/química , Viscosidade , Água/química
15.
J Oleo Sci ; 73(2): 253-261, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38311414

RESUMO

New troponoid liquid crystals with 5-(4-alkoxyphenylethynyl)tropolone cores were synthesized. The 5-(4-alkoxyphenylethynyl)tropolones were obtained by the palladium-catalyzed cross-coupling of 5-iodotropolone with 4-alkoxyphenylacetylenes. The 2-alkoxy-5-(4-alkoxyphenylethynyl)tropones (1A) showed enantiotropic smectic phases, such as smectic A, C, and B. The 2-(4-alkoxy)benzoyloxy-5-(4-alkoxyphenylethynyl)tropones (1B) had enantiotropic nematic and smectic C phases. The 2-alkoxytropone derivatives (1A) had higher clearing temperatures and lower melting points than the corresponding benzene derivatives (2A). However, the 2-(4-alkoxybenzoyl)tropone derivatives (1B) had lower clearing temperatures and higher melting points than the corresponding benzene derivatives (2B).


Assuntos
Álcoois , Cristais Líquidos , Tropolona , Cristais Líquidos/química , Temperatura , Derivados de Benzeno
16.
Elife ; 132024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189410

RESUMO

We formulate a hydrodynamic theory of confluent epithelia: i.e. monolayers of epithelial cells adhering to each other without gaps. Taking advantage of recent progresses toward establishing a general hydrodynamic theory of p-atic liquid crystals, we demonstrate that collectively migrating epithelia feature both nematic (i.e. p = 2) and hexatic (i.e. p = 6) orders, with the former being dominant at large and the latter at small length scales. Such a remarkable multiscale liquid crystal order leaves a distinct signature in the system's structure factor, which exhibits two different power-law scaling regimes, reflecting both the hexagonal geometry of small cells clusters and the uniaxial structure of the global cellular flow. We support these analytical predictions with two different cell-resolved models of epithelia - i.e. the self-propelled Voronoi model and the multiphase field model - and highlight how momentum dissipation and noise influence the range of fluctuations at small length scales, thereby affecting the degree of cooperativity between cells. Our construction provides a theoretical framework to conceptualize the recent observation of multiscale order in layers of Madin-Darby canine kidney cells and pave the way for further theoretical developments.


Assuntos
Hidrodinâmica , Cristais Líquidos , Animais , Cães , Células Madin Darby de Rim Canino , Epitélio , Cristais Líquidos/química , Movimento (Física)
17.
Int J Biol Macromol ; 260(Pt 1): 129544, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244739

RESUMO

Inspired by iridescent color in natural creations, cellulose nanocrystal (CNC) photonic crystals artificially created by nanotechnology have great application prospects due to their potential to control light propagation in the linear and nonlinear regimes. One of the most important development directions of photonic crystals is the diversification of colors, usually by adjusting the pitch. However, few researchers notice the effect of polymer molecular weight and content on pitch regulation and the interaction between polymer and CNC liquid crystals. Polyethylene glycol (PEG) were used as polymers to regulate the pitch of CNC photonic crystals and investigate the changes in microstructure, crystal structure, thermal properties, and liquid crystal texture of the composites by changing the PEG content and molecular weight. Different photonic crystal construction systems show that when the molecular weight of PEG is 0.4 k, it can be filled between CNCs to regulate the pitch of photonic crystals, while when the molecular weight of PEG is 20 k, it cannot always be filled between CNCs in evaporation-induced self-assembly (EISA) process due to the depletion interaction, which cannot effectively regulate the pitch. This study reveals the relationship between PEG and CNC liquid crystals, which supports the development of photonic crystals and the pitch regulation.


Assuntos
Cristais Líquidos , Nanopartículas , Celulose/química , Polietilenoglicóis/química , Nanopartículas/química , Polímeros
18.
BMC Pharmacol Toxicol ; 25(1): 9, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212864

RESUMO

INTRODUCTION: The Gram-negative bacterium Helicobacter pylori, H. pylori, is associated with significant digestive disorders. However, the effectiveness of bacterial eradication is declining due to drug resistance. A potent anti-H. pylori activity is shown by the natural antimicrobial peptide pexiganan. OBJECTIVE: The current study aimed to evaluate the effectiveness of pexiganan and its lipid-liquid crystals (LLCs) in inducing Helicobacter pylori in mice. METHODS: In this experimental study, H. pylori infection was first induced in C57BL/6 mice. Secondly, the antibacterial efficacy of pexiganan and its LLCs formulations was investigated to eliminate H. pylori infection. RESULTS: The H. pylori infection could not be completely eradicated by pexiganan peptide alone. However, incorporating pexiganan within the LLC formulation resulted in an increased elimination of H. pylori. Under the H&E strain, the pexiganan-LLCs formulation revealed minimal mucosal alterations and a lower amount of inflammatory cell infiltration in the stomach compared to the placebo. CONCLUSION: Clarithromycin was more effective than pexiganan at all tested concentrations. Furthermore, the pexiganan-loaded LLCs exhibited superior efficacy in curing H. pylori infection in a mouse model compared to pexiganan alone. This formulation can enhance H. pylori clearance while mitigating the adverse effects, typically associated with conventional drugs, leading to a viable alternative to current treatment options.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Cristais Líquidos , Camundongos , Animais , Infecções por Helicobacter/tratamento farmacológico , Camundongos Endogâmicos C57BL , Antibacterianos/uso terapêutico , Claritromicina/farmacologia , Claritromicina/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/farmacologia , Lipídeos , Quimioterapia Combinada
19.
Biomacromolecules ; 25(2): 1009-1017, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38166360

RESUMO

The layered liquid crystalline phases formed by DNA molecules, which include rigid and flexible segments ("gapped DNA"), enable the study of both end-to-end stacking and side-to-side (helix-to-helix) lateral interactions, forming a model system to study such interactions at physiologically relevant DNA and ion concentrations. The observed layer structure exhibits long-range interlayer and in-layer positional correlations. In particular, the in-layer order has implications for DNA condensation, as it reflects whether these normally repulsive interactions become attractive under certain ionic conditions. Using synchrotron small-angle X-ray scattering measurements, we investigate the impact of divalent Mg2+ cations (in addition to a constant 150 mM Na+) on the stability of the inter- and in-layer DNA ordering as a function of temperature between 5 and 65 °C. DNA constructs with different terminal base pairings were created to mediate the strength of the attractive end-to-end stacking interactions between the blunt ends of the gapped DNA constructs. We demonstrate that the stabilities at a fixed DNA concentration of both interlayer and in-layer order are significantly enhanced even at a few mM Mg2+ concentration. The stabilities are even higher at 30 mM Mg2+; however, a marked decrease is observed at 100 mM Mg2+, suggesting a change in the nature of side-by-side interactions within this Mg2+ concentration range. We discuss the implications of these results in terms of counterion-mediated DNA-DNA attraction and DNA condensation.


Assuntos
Cristais Líquidos , Cátions Bivalentes , DNA/química , Cátions , Temperatura
20.
Anal Chem ; 96(2): 866-875, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38164718

RESUMO

Despite extensive efforts, point-of-care testing (POCT) of protein markers with high sensitivity and specificity and at a low cost remains challenging. In this work, we developed an aptamer-CRISPR/Cas12a-regulated liquid crystal sensor (ALICS), which achieved ultrasensitive protein detection using a smartphone-coupled portable device. Specifically, a DNA probe that contained an aptamer sequence for the protein target and an activation sequence for the Cas12a-crRNA complex was prefixed on a substrate and was released in the presence of target. The activation sequence of the DNA probe then bound to the Cas12a-crRNA complex to activate the collateral cleavage reaction, producing a bright-to-dark optical change in a DNA-functionalized liquid crystal interface. The optical image was captured by a smartphone for quantification of the target concentration. For the two model proteins, SARS-CoV-2 nucleocapsid protein (N protein) and carcino-embryonic antigen (CEA), ALICS achieved detection limits of 0.4 and 20 pg/mL, respectively, which are higher than the typical sensitivity of the SARS-CoV-2 test and the clinical CEA test. In the clinical sample tests, ALICS also exhibited superior performances compared to those of the commercial ELISA and lateral flow test kits. Overall, ALICS represents an ultrasensitive and cost-effective platform for POCT, showing a great potential for pathogen detection and disease monitoring under resource-limited conditions.


Assuntos
Técnicas Biossensoriais , Cristais Líquidos , Sistemas Automatizados de Assistência Junto ao Leito , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Oligonucleotídeos , Sondas de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA